MEDRank: Using graph-based concept ranking to index biomedical texts
نویسندگان
چکیده
منابع مشابه
Concept-Graph Based Biomedical Automatic Summarization Using Ontologies
One of the main problems in research on automatic summarization is the inaccurate semantic interpretation of the source. Using specific domain knowledge can considerably alleviate the problem. In this paper, we introduce an ontology-based extractive method for summarization. It is based on mapping the text to concepts and representing the document and its sentences as graphs. We have applied ou...
متن کاملCondensing biomedical journal texts through paragraph ranking
MOTIVATION The growing availability of full-text scientific articles raises the important issue of how to most efficiently digest full-text content. Although article titles and abstracts provide accurate and concise information on an article's contents, their brevity inevitably entails the loss of detail. Full-text articles provide those details, but require more time to read. The primary goal ...
متن کاملExtracting Connected Concepts from Biomedical Texts using Fog Index
In this paper, we establish Fog Index (FI) as a text filter to locate the sentences in texts that contain connected biomedical concepts of interest. To do so, we have used 24 random papers each containing four pairs of connected concepts. For each pair, we categorize sentences based on whether they contain both, any or none of the concepts. We then use FI to measure difficulty of the sentences ...
متن کاملGraph-based Collaborative Ranking
Data sparsity, that is a common problem in neighbor-based collaborative filtering domain, usually complicates the process of item recommendation. This problem is more serious in collaborative ranking domain, in which calculating the users’ similarities and recommending items are based on ranking data. Some graph-based approaches have been proposed to address the data sparsity problem, but they ...
متن کاملAn extended dependency graph for relation extraction in biomedical texts
Kernel-based methods are widely used for relation extraction task and obtain good results by leveraging lexical and syntactic information. However, in biomedical domain these methods are limited by the size of dataset and have difficulty in coping with variations in text. To address this problem, we propose Extended Dependency Graph (EDG) by incorporating a few simple linguistic ideas and inclu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Medical Informatics
سال: 2011
ISSN: 1386-5056
DOI: 10.1016/j.ijmedinf.2011.02.008